Carbon Released by Warming Soils Could Trigger a Disastrous Feedback Loop (research)

Carbon Released by Warming Soils Could Trigger a Disastrous Feedback Loop (research)

Warming soils are releasing more carbon into the atmosphere than previously thought, suggesting a potentially disastrous feedback mechanism whereby increases in global temperatures will trigger massive new carbon releases in a cycle that may be impossible to break.

The increased production of carbon comes from the microbes within soils, according to a report in the peer-review journal Science, published on Friday.

The 26-year study is one of the biggest of its kind, and is a groundbreaking addition to our scant knowledge of exactly how warming will affect natural systems.

The results indicate that in a warming world, a self-reinforcing and perhaps uncontrollable carbon feedback will occur between forest soils and the climate system, adding to the buildup of atmospheric carbon dioxide caused by burning fossil fuels and accelerating global warming. The study, led by Jerry Melillo, distinguished scientist at the Marine Biological Laboratory.

Melillo and colleagues began this pioneering experiment in 1991 in a deciduous forest stand at the Harvard Forest in Massachusetts. They buried electrical cables in a set of plots and heated the soil five degrees Celsius above the ambient temperature of control plots. Over the course of the 26-year experiment, which is still ongoing, the warmed plots lost 17 percent of the carbon that had been stored in organic matter in the top 60 centimeters of soil.

“To put this in context,” Melillo said, “each year, mostly from fossil fuel burning, we are releasing about 10 billion metric tons of carbon into the atmosphere. That’s what’s causing the increase in atmospheric carbon dioxide concentration and global warming. The world’s soils contain about 3,500 billion metric tons of carbon. If a significant amount of that soil carbon is added to the atmosphere, due to microbial activity in warmer soils, that will accelerate the global warming process. And once this self-reinforcing feedback begins, there is no easy way to turn it off. There is no switch to flip.”

Over the course of the experiment, Melillo’s team observed fluctuations in the rate of soil carbon emission from the heated plots, indicating cycles in the capacity of soil microbes to degrade organic matter and release carbon. Phase I, from 1991 to 2000, was a period of substantial soil carbon loss that was rapid at first, then slowed to near zero. In Phase II, from 2001 to 2007, there was no difference in carbon emissions between the warmed and the control plots. During that time, the soil microbial community in the warmed plots was undergoing reorganization that led to changes in the community’s structure and function.

In Phase III, from 2008 to 2013, carbon release from heated plots again exceeded that from control plots. This coincided with a continued shift in the soil microbial community. Microbes that can degrade more recalcitrant soil organic matter, such as lignin, became more dominant, as shown by genomic and extracellular enzyme analyses. In Phase IV, from 2014 to current, carbon emissions from the heated plots have again dropped, suggesting that another reorganization of the soil microbial community could be underway. If the cyclical pattern continues, Phase IV will eventually transition to another phase of higher carbon loss from the heated plots.

“This work emphasizes the value of long-term ecological studies that are the hallmark of research at the MBL’s Ecosystems Center,” said David Mark Welch, MBL’s director of research. “These large field studies, combined with modeling and an increasingly sophisticated understanding of the role of microbial communities in ecosystem dynamics, provide new insight to the challenges posed by climate change.”

“The future is a warmer future. How much warmer is the issue,” Melillo said. “In terms of carbon emissions from fossil fuels, we could control that. We could shut down coal-fired power plants, for example. But if the microbes in all landscapes respond to warming in the same way as we’ve observed in mid-latitude forest soils, this self-reinforcing feedback phenomenon will go on for a while and we are not going to be able to turn those microbes off. Of special concern is the big pool of easily decomposed carbon that is frozen in Arctic soils. As those soils thaw out, this feedback phenomenon would be an important component of the climate system, with climate change feeding itself in a warming world.”

Thebritishjournal and Wire Services

  • Almost all The British Journal staff, including reporters, can be contacted by e-mail. In most cases the e-mail address follows this formula: first initial + last name + For example, Laura F. Nixon is [email protected]


    1. Rod

      October 8, 2017 at 4:46 pm

      Once again we see that CO2 rises after the temperature does. NOT the other way round.
      CO2 has nothing to do with climate but everything to do with food and our children’s survival!

      • Paul Loucks

        October 9, 2017 at 2:14 pm

        The temperature rise causes increased bacterial action in the soil and the bacterial action creates CO2 and methane, causing more warming. IT’s called a feedback. Not the first one. Warmer Arctic means less snow and ice to reflect the sun’s heat back into outer space. Warmer winters mean the same. This is proof of a computer model mentioned in “6 Degrees”, printed 2007.

    Leave a Reply

    Your email address will not be published. Required fields are marked *