US Researchers Use New Crispr System to Edit RNA in Human Cells

US Researchers Use New Crispr System to Edit RNA in Human Cells

Two groups of scientists have revealed a new, more precise arsenal of gene-editing techniques that could one day help us eradicate genetic diseases with highly targeted surgery at the chemical level.

The study, published this week in the journal Nature, describes the highly complex method by which researchers created what’s essentially a molecular machine—a so-called base editor—that can go into targeted cells and perform incredibly precise surgery on DNA. In doing so, the researchers say they are one step closer to using gene editing to potentially solve a host of illnesses.

Human DNA is made up of four nucleobases: adenine (A), cytosine (C), guanine (G), and thymine (T), which are the fundamental units of genetic coding. Those nucleobases naturally pair off in a typical DNA double-helix—and sometimes mutate, which can lead to thousands of disorders. One way scientists are trying to fix those mutations is through high-tech editing technology.

Researchers have figured out how to take gene editing to a whole new level, making extremely precise changes that may one day allow us to prevent the onset of some genetic diseases.

The study, published this week in the journal Nature, describes the highly complex method by which researchers created what’s essentially a molecular machine—a so-called base editor—that can go into targeted cells and perform incredibly precise surgery on DNA. In doing so, the researchers say they are one step closer to using gene editing to potentially solve a host of illnesses.

Human DNA is made up of four nucleobases: adenine (A), cytosine (C), guanine (G), and thymine (T), which are the fundamental units of genetic coding. Those nucleobases naturally pair off in a typical DNA double-helix—and sometimes mutate, which can lead to thousands of disorders. One way scientists are trying to fix those mutations is through high-tech editing technology.

One example Liu used was a theoretical process by which scientists might one day combat conditions such as adult sickle-cell anemia, which is caused by defects in adult hemoglobin genes. In addition to those adult genes, humans also all have fetal hemoglobin genes that naturally fix the defects in the adult genes. But our bodies often silence those fetal genes as we get older. Using new gene-editing technology, Liu said it’s possible to wake them up and allow them to work against the defects that could lead to sickle cell.

“A tremendous amount of work is still needed before these machines can be used to treat molecular diseases in humans,” Liu says, adding that the new tool will hopefully allow open more doors for geneticists to experiment. “We hope these tools will be widely used in the community.”

The British Journal Editors and Wire Services




  • Almost all The British Journal staff, including reporters, can be contacted by e-mail.

    In most cases the e-mail address follows this formula: first initial + last name + @thebritishjournal.com. For example, Laura F. Nixon is [email protected]

    Leave a Reply

    Your email address will not be published. Required fields are marked *